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In this paper we use a method from nonlinear optimal control theory to
establish the "perfect spline" properties of a solution to a certain extremum
problem. The problem is to minimize the L'" norm of a nonlinear expression of
the form F(t, x(t), x(t), x(t), ... , x(nl(t» over all sufficiently smooth functions x(t)
which satisfy given boundary conditions. Under suitable assumptions, we show
that a solution xo(t) must be such that F(t, xo(t), xo(t),..., x~n)(t» is constant, and
x~n)(t) is piece-wise continuous with a finite number of jump discontinuities.
This generalizes results by D. S. Carter, G. Glaeser, D. McClure, and others,
who studied the same problem for linear differential expressions.

1. INTRODUCTION

It is well known that many types of extremum problems have solutions
that are spline functions. We will discuss a few specific results for L'"
problems, and state first some definitions.

A real-valued function!(t) defined on an interval a ~ t ~ b is said to be
a spline of degree n, if there is a partition

such that:

(i) fis a polynomial of degree ~n on (t; , tH1) for j = 0, 1,... , k, and

(ii) f E Cn- 1 [a, b].

The points {t;}~ are the knots of f Such a functionfis called a perfect spline
if, furthermore,

(iii) I!(n)(t)[ is constant on [a, b] for t =1= t1 , t2 , ••• , tk •

The following two theorems by G. Glaeser [11, 1967] form a good starting
point for this paper:

THEOREM A. If 2n real values x~), xiv) for v = 1,2,... , n are specified,
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then the two-point Hermite interpolation problem flv)(a) = X~v+1l, flvJ(b) =
xiv+1l ,for v = 0, 1,... , n - 1 has a unique solutionfo(t) that is a perfect spline
ofdegree n having at most n - 1 knots in (a, b).

THEOREM B. The perfect spline fo of the above theorem is the unique
function that minimizes IlflnJllvXl among all functionsfwhich satisfy flv)(a) =

X~+1l, fevJ(b) = xiv+1) for v = 0, 1,..., n - 1 and are such that f<v)(t) for
v = 0, 1,... , n - 1 are absolutely continuous on [a, b].

These theorems by Glaeser have been extended by S. Karlin [14; 1973]
and D. McClure [17; 1975]. We will consider more closely some results of
McClure [17]. Before stating his results, we introduce some notations and
definitions. We introduce the Sobolev space

wn.oo = Wn.oo[a, b]

= {IE R[a, b] Iflv) is absolutely continuous for v = 0, 1,..., n - 1
and Ilfln)IILoo < oo}.

If x~l, xiv) for v = 1,2,... , n are given real values we consider

We next introduce a differential operator

n
A = Dn + L av(t) Dn-v

v=l

where D = dldt. We assume that av(t) E Cn-v[a, b] for v = 1,2,..., n, and
the adjoint A * is given by

n

A*ep = (_l)n Dnep + L (_l)n-v Dn-v(avep).
v=1

We can now consider the problem to minimize II AfilLoo over U. Put
0:0 = inffEu II AfllL'Xl . Now that A is defined, we say that a functionfE wn.oo

is an A-spline if there is a subdivision a = to < t1 < ... < tk < tk+1 = b
such that (Af)(t) is constant on each (t j , ti+l) for j = 0, 1,... , k. If, further
more, I(Af)(t) [ = constant on [a, b] for t =1= t1 , t2 , ••• , tk , then f is a perfect
A-spline. The points t j ,j = 1,2,... , k, are still called knots.

Now McClure introduces a disconjugacy condition, called Property T,
for A *. The operator A * is said to possess the Property T, if any nontrivial
solution ep of A *ep = 0 on [a, b] has at most n - I zeros in [a, b]. Observe
that A * = (-1) nDn (Glaeser's case) has Property T. We can then state

THEOREM C. (D. McClure [17]). There is a unique function fo E U such
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that II Afo IlL''' = (Xo. The function fo is a perfect A-spline on [a, b] with knots
{tj}~. Thus (A.fo)(t) = ±(Xo, with a fixed sign on each sub-interval (tj , tj+1)'
j = 0, I, ... , k. Further, if A* possesses Property T on [a, b], then k ~ n - 1.

Furthermore, McClure [17] proves

THEOREM D. If A* has Property T on [a, b], then there exists a unique
perfect A-spline.fo in U with at most n - 1 knots in (a, b).

This shows the analogy with Glaeser's theorems. McClure [17] proves
three more theorems on perfect A-splines. His paper is based on linear
control theory, whereas we will use here a quite different method from
nonlinear control theory.

Although the results of Glaeser and McClure provide a very good back
ground for our theorem, it seems necessary to mention the work of some
others. Parts of the results of Glaeser and McClure are contained in earlier
papers, and we will refer to a few of them.

First, we mention the paper by D. S. Carter [5; 1957]. In fact, Theorem 2
in [5], p. 140, implies Theorem C above, except that Carter gives no explicit
bound for the number of knots. Carter's conditions on the differential operator
A are weaker than the conditions imposed by McClure. It seems that Carter's
paper has not received the attention that it deserves.

Next, the paper by W. T. Reid [19; 1962] treats minimum £P norm
(I < p ~ (0) problems for linear differential operators. For p = 00, the
perfect spline properties of a solution can be concluded from [19] by some
effort (see pp. 603-605).

Finally, we mention the papers [9; 1974] and [8; 1974] by S. D. Fisher
and J. W. Jerome. In these papers, generalized splines are obtained as
solutions to £'-" extremum problems where interpolation conditions are
prescribed also at given points, interior to the basic interval [a, b]. We will
not discuss the relationship of [9] and [8] to McClure [17], but refer to the
interesting survey book [10; 1975; in particular sections 6 and 7] by Fisher
and Jerome.

So far, we have only given background material for the linear case. But
our theorem treats the problem of minimizing (over U)

II F(t, x(t), x(t), ... , x<n)(t»IIL ",

for a fairly general, nonlinear F. The literature on this problem is very sparse,
but in Section 4 we will make a few comments on its relation to our present
work.

Finally, we mention two more papers, which connect splines and optimal
control, namely O. L. Mangasarian and L. L. Schumaker [16, 1969]; and
r. J. Schoenberg [20; 1971]. These papers treat linear control systems and
functionals representable by integrals.
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2. PERFECT SPLINE PROPERTIES IN THE NONLINEAR CASE
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We will consider the problem of minimizing ess sUPa<t<b IF(t, x(t), ...,
xln)(t))[ over U. We omit the modulus sign, since we can just as well consider
G(oo,) = F(···)2. We thus study the functional

H(x) = ess sup F(t, x(t), x(t), ... , Xlnl(t)).
a<t<b

Naturally, we must impose conditions on the function F = F(t, Yo , 11 '00" Yn),
and besides smoothness we need conditions concerning its dependence on Yn .

We make the following assumptions:

(a) FE C1([a, b] X Rn+l)

(b) there is a function wE C([a, b] x Rn) such that

of .1> 0
-IS =0
°Yn < 0

if Yn > wet, Yo , Yl '00" Yn-l)
if Yn = wet, Yo , , Yn-l)
if Yn < w(t, Yo , , Yn-l)

(c) limlllnl-.oo F(t, Yo ,Yl '00" Yn) = + 00

for arbitrary fixed (t, Yo '00" Yn-l) E [a, b] X Rn.

These conditions can be relaxed, but they seem convenient here. Observe
that our conditions are satisfied in the linear case (if all coefficients av(t) E Cl),
since we have then

(
n-l )2

F(t, Yo , ... , Yn) == Yn + ~o a.(t) Y. ,

n-l
and wet, Yo '00" Yn-l) = - L.=o av(t) Y•.

Introduce the "minimum function" m(t, Yo, 11 ,... , Yn-l) = F(t, Yo Yl ,... ,
Yn-l' wet, Yo, Yl ,... , Yn-l))' Clearly, m E C([a, b] X Rn).

We can now state our main result.

THEOREM. Let xo(t) minimize H(x) over U. Put H(xo) = Mo. Assume
that

(*)

for a :'( t :'( b.
Then there are a finite number of points {tk}i" such that

and such that:
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(i) Xo(t) E CMI on [a, b]\{tk}f .

(ii) F(t, xoCt), xo(t), ..., x~nl(t)) = M o on [a, b]\{tk}f .

(iii) x~n)(t) has a jump discontinuity at each tk .

(By definition xo(t) E Cn-l[a, b].)

We have thus good reasons for calling xo(t) a perfect spline, or a "perfect
F-spline", with knots {tk}f .

The condition (*) is superfluous in the linear case, but essential here, as
we will show by a trivial example.

Choose F = t + :L:=o yv2
, a = 0, b = 1, and all boundary data zero.

Clearly, min:l:EU H(x) = 1, and any x(t) E U such that

n

t + L (X<vl(t»2 ~ I a.e.
v~o

is optimal. Thus, the theorem does not apply here, and the reason is that
(*) does not hold at t = 1.

3. PROOF OF THE THEOREM

We divide the proof into four parts.

(I) Transformation of the Problem into Convenient Control Form

Let x(t) E Wn.oo• Introduce a vector x = x(t) ERn by the identification
xlvl(t) = XvH(t), v = 0, 1,..., n - 1. Then Xi = Xi+l for i = 1, 2,... , n - 1.
We must represent xn = x(n) in a way that is convenient for our purpose.

Consider the curve in [a, b] X Rn:

Iy = {(t, xo(t), xo(t), ... , x~n-l)(t» I a ~ t ~ b}.

According to (*) we have met, x) < Mo on y, and by continuity there is a
neighbourhood V of y such that met, x) < M o in V. Now take an arbitrary
(t, x) Eve [a, b] X Rn. Then, because of our assumptions on the function
F, the equation

F(t, Xl' X2 ,... , xn , y) = M o

has exactly two solutions y = ¢JI(t, x) and y = ¢J2(t, x). Let us agree that
¢JI(t, x) < ¢J2(t, x). Then we have ¢JI(t, x) < wet, x) < ¢J2(t, x) and, clearly,
¢JI and ¢J2 are in Cl(V).
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We now introduce a scalar control variable u and write our control system
as follows:

In vector form we write x = get, x, u). From now on, we restrict our attention
to (t, x) E V and observe that get, x, u) E Cl(V X R). Because of our con
struction, we have F(t, x, J(t, x, u)) :::;; Mo if and only if I u I ~ 1 and
F(· ..) < Mo if and only if I u I < 1. Furthermore, possibly after reducing V,
the following holds: for any ~, 0 < ~ < 1, we have

sup{F(t, x,f(t, x, u)) I (t, x) E V, Iu I :::;; ~} < M o •

We draw the following important conclusion: if the control system
x = get, x, u) can be steered between the prescribed endpoints, without
leaving V, by a control function u('), such that II uOlIL'lO < 1, then this will
contradict the definition of M o , since we would then obtain an XE U such
that H(x) < Mo.

(II) Proof that the Maximum Principle is Applicable Here

We shall use the technique of "elementary perturbations" of the control.
For this, we refer to Pontryagin et al. [18], Chap. 2, or (preferably) Lee
and Markus [15], pp. 247-252. We shall use the terminology of [15]. Return
to our optimal function xit) and let x(t) be the vector function
(xo(t), xo(t), ..., x~n-ll(t)Y. Then x(t) = get, x(t), u(t)), with a uniquely defined
(a.e.) control function u(t). Further, we have -1:::;; u(t) :::;; +1 (a.e.),
since H(xo) = Mo. Put Q = [-1, 1] = the control restraint set. We can
now define "elementary perturbations" ofuand x, and consider the "tangent
perturbation cone" K t exactly as in [15], pp. 247-249. The fact that our system
is not autonomous, has no importance here. The results of [15] carryover.
We are interested in the final perturbation cone Kb • If Kb is not the whole
tangent space at x(b), then it is contained in a halfspace bounded by a hyper
plane through the origin, and then the maximum principle will follow;
see [15], pp. 254-255.

Suppose then that Kb is the whole tangent space at x(b). But then there exists
a control Ue (t) such that II ue IILoo :::;; gl < 1, and such that Ue steers our

1 1 1

system X = get, x, u) between the prescribed endpoints without leaving V,
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and this gives a contradiction, according to (I). The existence of UE (t) follows
• 1

by exactly the same arguments as In the author's own paper [4], pp. 61-63.
We use a "shrinking trick", plus a topological covering argument, and gl
can be thought of as the "shrinking parameter".

(III) The Maximum Principle and the Adjoint System

Thus the maximum principle holds for x(t), u(t) and the control system
oX = g(t, x, u). Hence there is a nontrivial solution TJ(t) = (TJl(t), ..·, TJn(t))
of the system

such that

iJ = -TJ :~ (t, x(t), u(t»

TJ(t) g(t, x(t), u(t» = max (TJ(t) g(t, x(t), u» a.e.
I ul.;;;l

(1)

(The system (1) is adjoint to the variational system for oX = g(t, x, u(t»,
along x(t).) From the form of the function g(t, x, u) we conclude at once
that

u(t) = sign TJn(t) a.e. on the set, where TJn(t) =1= 0.

We must therefore study the zeros of TJn(t). Clearly, the adjoint system (1)
has the form

dTJl of ( -() -(»-d = - -;;;-- t, x t , u t TJn
t UXl

dTJ2 of ( -() -(»-d = -TJl - -;;;-- t, x t , u t TJnt UX2

dTJa = -TJ2 - of ( ...) TJ
dt OXa n

Now let TJn(t) > °on some interval Ie [a, b]. From u = sign TJn we con
clude that

X~n\t) = ifl2(t, xo(t), oXo(t), ... , x~n-l» on I.

If TJn(t) < 0, we find x~n) = iflk") on I. Since ifll' ifl2 E Cl(V) it follows in
both cases that xoO E cn+l(I), and F(t, xit), ... , x~n)(t» = Mo on I. Thus
the theorem will follow if we can prove that TJn(t) has only a finite number of
zeros.
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(IV) Proof that the Number ofSwitches is Finite

We consider now '1)(t) as a column vector and write the adjoint system as

iJ = -Ao'1) - :~ (t, x(t), it(t)) '1)n

where

A
o = [LLL~j]

o 0 0 ···10

Assume that '1)n(t) has an infinity of zeros on [a, b]. After reversing the t-axis
we may write

iJ = Ao'1) + ep(t) '1)n

where ep(t) E Loo is an (n X I) vector function. We can assume that the zeros
of '1)n(t) cluster at t = O. We have

'1)(t) = eAot'1)(O) + f eAo(t-s) ep(s) '1)n(S) ds.
o

Now the matrix Ao is nilpotent and eAot is easily computed. In fact, we have
(see [12], p. 99)

0 0
t 1 0
t 2

eAot = T

(n - I)! (n - 2)! (n - 3)!
t 2

... - t 1
2

By taking the n:th component in the above equation for '1)(t) we find

(2)

where the polynomial pet) =1= 0, since '1)(0) =F O. Let cktk be the lowest order
term in pet). Thus I '1)n(t)! ~ c~ I t Ik + dk I f~ ! '1)n(S) Ids I for some constants
c~ > 0 and dk • From the generalized Gronwall inequality ([I2], p. 36)
we infer that '1)n(t) = O(tk). But then the integral in (2) is O(tk+l). Hence it
follows from (2) and our choice of k that the zeros of '1)n can not cluster at
t = O.

The contradiction completes the proof.
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4. VARIOUS REMARKS

(a) The Linear Case

Consider the problem to minimize

ess sup (xln)(t) + 1f av(t) X(V)(t»)2
a<t<b v=o

over U. Let all avCt) E Cl[a, b]. Here, we can apply standard arguments to
the control formulation and deduce that a minimizing function xo(') exists
(this need not hold in the general nonlinear case). See McClure [17], pp. 229,
235.

If M o= 0, then X6n)(t) + 'L:':ol
av(t) xi;')(t) = 0, and Xois obviously unique.

Now let M o > O. Then, clearly, the condition (*) holds, and our theorem
is applicable. The functions !fil and !fi2 (in part I of the proof) are:

n-l
!fil(t, x) = - L av(t) xv+! - (MO)1/2

v=o

and
n-l

!filt, x) = - L av(t) Xv+l + (MO)1/2.
v=o

On an interval where u(t) = +1, we have jet, x(t), u(t» = !fi2(t, x(t», and
ifu(t) = -1, thenj("') = !fik").

Consequently, the adjoint system for 7] in both cases has the form

7jl = ao(t) 7]n

7j2 = -7]1 + al(t) 7]n

7j3 = -7]2 + a2(t) 7]n

7jn-l = -7]n-2 + an-2(t) 7]n

7jn = -7]n-l + an-let) 7]n

Assume that av{t) E Cv[a, b] for v = 2,3,..., n - 1. Clearly 7](t) E Cl[a, b].
The last equation implies 7]n E C2, and

by the equation for 7jn-l . Hence 7]n E C3, and
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by the equation for l}n-2 . Since all av EO CV, we can continue in this way and
find, eventually,

n-l

YJ~n) + L (-It-v DV(avYJn) = O.
v=o

Now, if A = Dn + L:':Ol alt) Dv, then this equation is (not surprising!)
the adjoint equation for YJn .

We thus obtain Theorem C (by McClure) of Section 1 again, except that the
uniqueness of xoO does not follow from our theorem.

If the disconjugacy condition "Property TOO is omitted from Theorem C,
then no explicit bound can be given for the number of knots of xo(.). To
warrant that "Property TOO holds, one can try various disconjugacy criteria.
See e.g. Coppel [6], or Hartman [13].

(b) The Nonlinear Case

Here, in contrast to the linear case the adjoint system for YJ(t) will depend
on the sought function xo(.). Thus, the situation is more complicated and it
is more difficult to estimate the number of switches.

The case n = 1 of the nonlinear problem has been treated in detail
by the present author in [1,2,3]. The author has also treated the case
n = 1 for a vector-valued function in [4]. The case n = 1 of our present
theorem is contained in the theorem in [3], p. 509. Observe that, in this case,
there is obviously no switch. (Compare [3].)

In contrast to the linear case, the problem of the existence of a minimizing
function in U is no longer trivial. This is illustrated by a counterexample
in [2], p. 410. See further [10], pp. 12-22.

S. D. Fisher [7] approaches the nonlinear problem via functional analysis.
The approach is interesting, but the results obtained are quite implicit,
and he does not establish the spline properties of a minimizing function.
See further [10], Sect. 3.

Examples for the case n = 1 are given in the author's papers [1,2,3] and
in Fisher [7].

Finally, we remark that our theorem is not formulated in its greatest
possible generality. For instance, most of the conditions on F need only hold
locally, and it is not necessary that xo(·) should give a global minimum over U.
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